
charm4py:	Python	Parallel	Programming	
Framework

Juan	J.	Galvez
University	of	Illinois	at	Urbana-Champaign

Charm++	BoF SC’18

Charm++	with	Python
l Parallel/distributed	programming	framework	for	
Python,	built	on	top	of	Charm++

l Simplified	programming	model	and	API
l Interactive	mode	for	parallel/distributed	applications
l Wide	support	for	futures	for	direct-style	programming	
with	blocking	semantics	(still	does	
computation/communication	overlap	internally)

Starting	the	Application
l 1)	Launch	multiple	processes	using	job	launcher	(similar	
to	MPI).	Provided	charmrun tool	suitable	for	
workstations	and	small	clusters
- python3	-m	charmrun.start +p20	myprog.py
- srun job_params /path/to/python	myprog.py

Simple	example
from charm4py import charm, Chare, Group, Array

class Test(Chare):
def myMethod(self, x, y, z):

print(“Hello from element”, self.thisIndex, x, y, z)

program entry point, runs on one process
def main(args):

create and distribute work
testGroup = Group(Test)
testArray = Array(Test, 100)
testGroup.myMethod([1,2,3], numpy.arange(1,100), “test_group”)
testArray.myMethod([4,5,6], numpy.arange(50,100), “test_array”)

initialize runtime
charm.start(main)

Remote	Method	Invocation
l proxy.method(x,	y)
l Data	arrays	(e.g.	numpy arrays)	are	

directly	copied	into	a	message	
buffer	in	Charm++

l All	other	arguments	are	serialized	
using	the	pickle library	(can	
automatically	serialize	most	
Python	types)

l Pickling	can	also	be	customized
Arguments are

serialized, packed
in message

Arguments x,y are
passed by reference

(PyObject*)

Futures
l Remote	method	invocation	(i.e.	via	proxy)	is	asynchronous,	returns	immediately

l Can	obtain	a	future:

l get()	blocks	until	result	arrives.	If	broadcast	call,	returns	when	all	chares	have	
executed	the	method

l allReduce,	barrier	and	others	also	supported	(in	next	version)

f1 = proxy.method1(*args, ret=True)
f2 = proxy.method2(*args, ret=True)
f3 = proxy.method3(*args, ret=True)
... do work ...
wait for values now
vals = [f1.get(), f2.get(), f3.get()]

stencil3d	code	on	Cori

2 nodes. No imbalance. 2 nodes. Synthetic imbalance.
4 blocks (chares) per process

Thank	you

Resources:
https://charm4py.readthedocs.io

https://github.com/UIUC-PPL/charmpy

